first commit

This commit is contained in:
2019-08-19 19:19:58 +08:00
parent 7bb6b54204
commit 2b71bf8135
145 changed files with 23208 additions and 0 deletions

View File

@@ -0,0 +1,23 @@
#ifndef HGL_ALGORITHM_MATH_FAST_TRIANGLE_FUNCTION_INCLUDE
#define HGL_ALGORITHM_MATH_FAST_TRIANGLE_FUNCTION_INCLUDE
namespace hgl
{
double Lsin(int angle); ///<低精度sin计算,注意传入的参数为角度而非弧度
double Lcos(int angle); ///<低精度cos计算,注意传入的参数为角度而非弧度
void Lsincos(int angle, double &s, double &c); ///<低精度sin+cos计算,注意传入的参数为角度而非弧度
/**
* 低精度atan函数
*/
double inline Latan(double z)
{
constexpr double n1 = 0.97239411f;
constexpr double n2 = -0.19194795f;
return (n1 + n2 * z * z) * z;
}
double Latan2(double y, double x); ///<低精度atan2函数
}//namespace hgl
#endif//HGL_ALGORITHM_MATH_FAST_TRIANGLE_FUNCTION_INCLUDE

8
inc/hgl/math/Math.h Normal file
View File

@@ -0,0 +1,8 @@
#ifndef HGL_ALGORITHM_MATH_INCLUDE
#define HGL_ALGORITHM_MATH_INCLUDE
#include<hgl/math/FastTriangle.h>
#include<hgl/math/Vector.h> // Game Math and Geometry Library
#include<hgl/math/Matrix.h>
#endif//HGL_ALGORITHM_MATH_INCLUDE

156
inc/hgl/math/Matrix.h Normal file
View File

@@ -0,0 +1,156 @@
#ifndef HGL_ALGORITHM_MATH_VECTOR_MATRIX_INCLUDE
#define HGL_ALGORITHM_MATH_VECTOR_MATRIX_INCLUDE
#include<hgl/math/Vector.h>
#include<hgl/TypeFunc.h>
//注GLM/CML(OpenGLMode)是列矩阵,计算坐标matrix*pos
// 而MGL是行矩阵需要反过来pos*matrix
namespace hgl
{
using Matrix3f=float3x3;
using Matrix4f=float4x4;
struct WorldMatrix
{
alignas(16) Matrix4f ortho; //2D正角视图矩阵
alignas(16) Matrix4f projection;
// alignas(16) Matrix4f inverse_projection;
alignas(16) Matrix4f modelview;
alignas(16) Matrix4f mvp;
alignas(16) Vector4f view_pos; //眼睛坐标
};//struct WorldMatrix
inline Matrix4f identity()
{
return Matrix4f::identity;
}
inline Matrix4f inverse(const Matrix4f &m)
{
return m.Inverted();
}
inline Matrix4f ortho( float left,
float right,
float bottom,
float top,
float znear,
float zfar )
{
return Matrix4f(
2.0f / (right - left), 0.0f, 0.0f, -(right + left) / (right - left),
0.0f, 2.0f / (bottom - top), 0.0f, -(bottom + top) / (bottom - top),
0.0f, 0.0f, 1.0f / (znear - zfar), znear / (znear - zfar),
0.0f, 0.0f, 0.0f, 1.0f);
}
/**
* 生成一个正角视图矩阵
* @param width 宽
* @param height 高
* @param znear 近平面z值
* @param zfar 远平台z值
*/
inline Matrix4f ortho(float width,float height,float znear,float zfar)
{
return Matrix4f(
2.0f / width, 0.0f, 0.0f, -1,
0.0f, 2.0f / height, 0.0f, -1,
0.0f, 0.0f, 1.0f / (znear - zfar), znear / (znear - zfar),
0.0f, 0.0f, 0.0f, 1.0f);
}
/**
* 生成一个正角视图矩阵
* @param width 宽
* @param height 高
*/
inline Matrix4f ortho(float width,float height)
{
return Matrix4f(
2.0f / width, 0.0f, 0.0f, -1,
0.0f, 2.0f / height, 0.0f, -1,
0.0f, 0.0f, -1.0f , 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
}
/**
* 生成一个透视矩阵
* @param aspect_ratio 宽高比
* @param field_of_view 视野
* @param znear 近截面
* @param zfar 远截面
*/
inline Matrix4f perspective(float field_of_view,
float aspect_ratio,
float znear,
float zfar)
{
const float f = 1.0f / tan( hgl_ang2rad( 0.5f * field_of_view ) );
// float scaleX, shearXy, shearXz, x;
//float shearYx, scaleY, shearYz, y;
//float shearZx, shearZy, scaleZ, z;
//float shearWx, shearWy, shearWz, w;
return Matrix4f(
f / aspect_ratio, 0.0f, 0.0f, 0.0f,
0.0f, -f, 0.0f, 0.0f,
0.0f, 0.0f, zfar / (znear - zfar), (znear * zfar) / (znear - zfar),
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 某些引擎这两项会乘0.5,那是因为他们是 -1 to 1 的Z值设定而我们是0 to 1所以这里不用乘
// 同理camera的znear为接近0的正数zfar为一个较大的正数默认使用16/256
0.0f, 0.0f, -1.0f, 0.0f);
}
inline Matrix4f translate(const Vector3f &v)
{
return Matrix4f::Translate(v);
}
inline Matrix4f translate(float x,float y,float z)
{
return Matrix4f::Translate(x,y,z);
}
inline Matrix4f scale(const Vector3f &v)
{
return Matrix4f::Scale(v,Vector3f::zero);
}
inline Matrix4f scale(float x,float y,float z)
{
return Matrix4f::Scale(Vector3f(x,y,z),Vector3f::zero);
}
inline Matrix4f scale(float s)
{
return Matrix4f::Scale(Vector3f(s,s,s),Vector3f::zero);
}
inline Matrix4f rotate(float angle,const Vector3f &axis)
{
return Matrix4f::RotateAxisAngle(axis.Normalized(),angle);
}
inline Matrix4f rotate(float angle,float x,float y,float z)
{
return rotate(angle,Vector3f(x,y,z));
}
inline Matrix4f rotate(float angle,const Vector4f &axis)
{
return rotate(angle,Vector3f(axis.x,axis.y,axis.z));
}
inline Vector3f rotate(const Vector3f &v3f,float angle,const Vector3f &axis)
{
Vector4f result=rotate(angle,axis)*Vector4f(v3f,1.0f);
return result.xyz();
}
}//namespace hgl
#endif//HGL_ALGORITHM_MATH_VECTOR_MATRIX_INCLUDE

346
inc/hgl/math/Vector.h Normal file
View File

@@ -0,0 +1,346 @@
#ifndef HGL_ALGORITHM_MATH_VECTOR_INCLUDE
#define HGL_ALGORITHM_MATH_VECTOR_INCLUDE
#ifdef _MSC_VER
#pragma warning(disable:4244) // double -> int 精度丢失警告
#endif//_MSC_VER
#include<hgl/math/FastTriangle.h>
#include<MathGeoLib.h>
/**
* MathGeoLib
* Game Math and Geometry Library
*
* My C++ library for 3D mathematics and geometry manipulation.
* Jukka Jylänki
*
* offical web: http://clb.demon.fi/MathGeoLib/nightly/
*
* License:
*
* This library is licensed under the Apache 2 license. I am not a lawyer, but to me that
* license means that you can use this code for any purpose, both commercial and closed source.
* You are however restricted from claiming you wrote it yourself, and cannot hold me liable
* for anything over this code.
* I acknowledge that most of the non-trivial math routines are taken off a book or a
* research paper. In all places, I have tried to be diligent to properly attribute the original
* source. Please contact me if you feel I have misattributed something.
*/
namespace hgl
{
using Vector2f=float2;
using Vector3f=float3;
using Vector4f=float4;
inline bool operator == (const Vector2f &lhs,const Vector2f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
return(true);
}
inline bool operator != (const Vector2f &lhs,const Vector2f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
return(false);
}
inline bool operator == (const Vector3f &lhs,const Vector3f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
if(lhs.z!=rhs.z)return(false);
return(true);
}
inline bool operator != (const Vector3f &lhs,const Vector3f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
if(lhs.z!=rhs.z)return(true);
return(false);
}
inline bool operator == (const Vector4f &lhs,const Vector4f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
if(lhs.z!=rhs.z)return(false);
if(lhs.w!=rhs.w)return(false);
return(true);
}
inline bool operator != (const Vector4f &lhs,const Vector4f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
if(lhs.z!=rhs.z)return(true);
if(lhs.w!=rhs.w)return(true);
return(false);
}
inline void vec3to2(Vector2f &dst,const Vector3f &src)
{
dst.x=src.x;
dst.y=src.y;
}
inline Vector2f vec3to2(const Vector3f &src)
{
return Vector2f(src.x,src.y);
}
inline void vec2to3(Vector3f &dst,const Vector2f &src,const float z)
{
dst.x=src.x;
dst.y=src.y;
dst.z=z;
}
inline Vector3f vec2to3(const Vector2f &src,const float z)
{
return Vector3f(src.x,src.y,z);
}
template<typename T>
inline T normalized(const T &v)
{
return v.Normalized();
}
template<typename T>
inline void normalize(T &v)
{
v.Normalize();
}
template<typename T>
inline T cross(const T &v1,const T &v2)
{
return v1.Cross(v2);
}
template<typename T>
inline float dot(const T &v1,const T &v2)
{
return v1.Dot(v2);
}
inline float ray_angle_cos(const Ray &ray,const vec &pos)
{
return ray.dir.Dot((pos-ray.pos).Normalized());
}
inline float length_squared(const Vector2f &v)
{
return (v.x*v.x) + (v.y*v.y);
}
inline float length_squared_2d(const Vector3f &v)
{
return (v.x*v.x) + (v.y*v.y);
}
inline float length_squared(const Vector3f &v)
{
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
}
inline float length_squared(const Vector4f &v)
{
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
}
template<typename T>
inline float length(const T &v)
{
return sqrt(length_squared(v));
}
inline float length_2d(const Vector3f &v)
{
return sqrt(length_squared_2d(v));
}
template<typename T1, typename T2>
inline float length_squared(const T1 &v1, const T2 &v2)
{
const float x = (v1.x - v2.x);
const float y = (v1.y - v2.y);
return x*x + y*y;
}
template<typename T1, typename T2>
inline float length(const T1 &v1, const T2 &v2)
{
return sqrt(length_squared(v1, v2));
}
inline float length_squared(const Vector3f &v1, const Vector3f &v2)
{
const float x = (v1.x - v2.x);
const float y = (v1.y - v2.y);
const float z = (v1.z - v2.z);
return x*x + y*y + z*z;
}
template<typename T1, typename T2>
inline float length_squared_2d(const T1 &v1, const T2 &v2)
{
const float x = (v1.x - v2.x);
const float y = (v1.y - v2.y);
return x*x + y*y;
}
inline float length(const Vector3f &v1, const Vector3f &v2)
{
return sqrt(length_squared(v1, v2));
}
template<typename T1, typename T2>
inline float length_2d(const T1 &v1, const T2 &v2)
{
return sqrt(length_squared_2d(v1, v2));
}
inline Vector2f to(const Vector2f &start, const Vector2f &end, float pos)
{
return Vector2f(start.x + (end.x - start.x)*pos,
start.y + (end.y - start.y)*pos);
}
inline Vector3f to(const Vector3f &start, const Vector3f &end, float pos)
{
return Vector3f(start.x + (end.x - start.x)*pos,
start.y + (end.y - start.y)*pos,
start.z + (end.z - start.z)*pos);
}
template<typename T>
inline void to_2d(T &result, const T &start, const T &end, float pos)
{
result.x = start.x + (end.x - start.x)*pos;
result.y = start.y + (end.y - start.y)*pos;
}
inline float ray_angle_cos(const Vector3f &ray_dir, const Vector3f &ray_pos, const Vector3f &pos)
{
return dot(ray_dir, normalized(pos - ray_pos));
}
/**
* 做一个2D旋转计算
* @param result 结果
* @param source 原始点坐标
* @param center 圆心坐标
* @param ang 旋转角度
*/
template<typename T1, typename T2, typename T3>
inline void rotate2d(T1 &result, const T2 &source, const T3 &center, const double ang)
{
double as, ac;
// double nx,ny;
// as=sin(ang*(HGL_PI/180.0f));
// ac=cos(ang*(HGL_PI/180.0f));
//sincos(ang*(HGL_PI/180.0f),&as,&ac); //在80x87指令上sin/cos是一个指令同时得出sin和cos所以可以这样做
Lsincos(ang, as, ac); //低精度sin/cos计算
result.x = center.x + ((source.x - center.x)*ac - (source.y - center.y)*as);
result.y = center.y + ((source.x - center.x)*as + (source.y - center.y)*ac);
}
template<typename T> union vec2
{
struct { T x,y; };
struct { T r,g; };
struct { T u,v; };
T data[2];
public:
vec2(){x=y=0;}
vec2(T v1,T v2):x(v1),y(v2){}
vec2(const vec2 &v2)
{
x=v2.x;
y=v2.y;
}
vec2(const Vector2f &v2f)
{
x=v2f.x;
y=v2f.y;
}
operator const Vector2f()const{return Vector2f(x,y);}
};
template<typename T> union vec3
{
struct { T x,y,z; };
struct { T r,g,b; };
struct { T u,v,w; };
T data[3];
public:
vec3(){x=y=z=0;}
vec3(T v1,T v2,T v3):x(v1),y(v2),z(v3){}
vec3(const vec3 &v3)
{
x=v3.x;
y=v3.y;
z=v3.z;
}
vec3(const Vector3f &v3f)
{
x=v3f.x;
y=v3f.y;
z=v3f.z;
return *this;
}
operator const Vector3f()const{return Vector3f(x,y,z);}
};
template<typename T> union vec4
{
struct { T x,y,z,w; };
struct { T r,g,b,a; };
T data[4];
public:
vec4(){x=y=z=w=0;}
vec4(T v1,T v2,T v3,T v4):x(v1),y(v2),z(v3),w(v4){}
vec4(const vec4 &v4)
{
x=v4.x;
y=v4.y;
z=v4.z;
w=v4.w;
}
vec4(const Vector4f &v4f)
{
x=v4f.x;
y=v4f.y;
z=v4f.z;
w=v4f.w;
return *this;
}
operator const Vector4f()const{return Vector4f(x,y,z,w);}
};
}//namespace hgl
#endif//HGL_ALGORITHM_MATH_VECTOR_INCLUDE